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WHAT ARE WE TALKING ABOUT ???

ONTOLOGY ENGINEERING



DEVELOPING KNOWLEDGE SYSTEMS
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SOFTWARE ENGINEERING — TECHNICAL ENGINEERING

ENGINEERING PROCESS

• Software Engineering Process - advanced discipline 

• safety critical / business critical … applications 

• reliable nowadays - evolving from day do day 

• process models - project models - clear structure 

• Waterfall — V-Modell — V-Modell-XT — AUP/RUP — Scrum

1. System Requirements Analysis 5. Coding

2. Software Requirements Analysis 6. Testing & Integration

3. Analysis (Tools, Libraries, HW-Arch.) 7. Operations

4. Program Design



“APPLICATIONS MAY RELYING ON ONTOLOGIES”

ONTOLOGY ENGINEERING PURPOSE

• #, @ Notation 

• “you were mentioned by ….” 

• Picture tagging by location, hashtag, etc.

• Proprietary Solutions (knowledge systems): 

• Catalog / Shop systems 

• ERP systems / business logic systems 

• Laws — Case Classification and judgements 

• Medicine — Modelling Diseases and symptoms



ONTOLOGY ENGINEERING

PREREQUISITES

• Open Standards for data exchange 

• closed for modification open for extension — future standards

1. Modelling Formalism 

1. Technical storage: relational oo-DB vs. semantic approach 

2. Semantics: Decision about semantics — RDF vs. OWL vs. OWL2 

2. Requirements specification



"TEACHING THE KNOWLEDGE SYSTEM"

GATHERING KNOWLEDGE

• Ontologies/knowledge systems need to be trained automatically 

• Huge amount of data 

• "Knowledge" needs to be taken from existing data sources 

• People - to be structured (manually or automatically) 

• Books - unstructured source 

• “Internet" - semistructured source 

• Databases - structured source



MODELLING ONTOLOGIES
PRINCIPLES AND METHODS

1. Logical Criteria 5. Quantification and Quantifiers

2. Structural and Formal Criteria 6. Part and Subclass Identity

3. Accuracy Criteria 7. Subclasses and equivalent classes

4. Disjointness 8. Translate loosely from natural 
languages



1. LOGICAL CRITERIA

MODELLING ONTOLOGIES

• Model has to be consistent — (“also against real world”) 

• Consistency: Correct mapping of real world and model/formalism 

• Inconsistency: != Consistency 

• logical consequences —> deduction wrong 

• inconsistent/unsatisfiable class: if class interpreted as empty set 

• Coherency: ontology does not contain unsatisfiable/inconsistent 
classes

to do a model checking. The purpose and the functionality of a reasoner will be
discussed in section 3.2. Of course the before mentioned approaches can only be
used in the context of a real application but there exist some techniques that
can be initially followed.

1. Logical Criteria
2. Structural and Formal Criteria
3. Accuracy Criteria
4. Disjointness
5. Quantification and Quantifiers

6. Part and Subclass Identity

7. Subclasses and equivalent classes

8. Translate loosely from natural lan-
guages

(1) deals with the characteristics which can be directly checked on a logical
level based on the model.
Inconsistency: An ontology is called inconsistent if there is not a correct map-
ping between the ”real world” and the model. The issue is that an inconsistent
ontology follows statements as logical consequences but cannot be used for auto-
mated deduction. (A class is called inconsistent/unsatisfiable if it is interpreted
as an empty set in the model. This is not an issue as long as no instance is added
to the class.)
Coherency: An ontology does not contain unsatisfiable classes. A consistent
ontology can be incoherent but a coherent ontology cannot be inconsistent.
Software tools o↵er automatic checking for these flaws. Incoherency and incon-
sistency can be prevented by not constraining the model enough.

Horse v ¬Flies
F lyingHorse ⌘ Horse u Flies

F lyingHorse(Pegasus)

[6, p. 317, 318]

(2) indicates another modelling problem, kinds of taxonomic cycles inside the
structure. This behaviour may occur when using classes which have a similar
meaning in semantic, but this is rather seldom. The following example shows a
taxonomic circle:

Architecture v Faculty
Faculty v University
University v Building
Building v Architecture

To prevent such a behaviour the ontology can be checked for rigidity.
Rigidity: A class is called rigid if every member of it cannot stop being a member
without loosing existence. A class can be rigid, anti-rigid, or none-of both, addi-
tional characteristics might be Identity, Unity and dependency. [6, p. 319, 320]
Tools exist for automated ontology checking, such as reasoning tools which can
determine the set of axioms which are responsible for the inconsistency. Further
information about a semantic reasoner will be given in section 3.2.

MODEL TURNS 
INCONSISTENT 
WHEN ADDING 

INSTANCE

REASONER 
WILL ALARM



• Taxonomic Cycles: 

• Check for rigidity: 

• every member of a class cannot stop being a member without 
loosing existence

MODELLING ONTOLOGIES
2. STRUCTURAL AND FORMAL CRITERIA

to do a model checking. The purpose and the functionality of a reasoner will be
discussed in section 3.2. Of course the before mentioned approaches can only be
used in the context of a real application but there exist some techniques that
can be initially followed.

1. Logical Criteria
2. Structural and Formal Criteria
3. Accuracy Criteria
4. Disjointness
5. Quantification and Quantifiers

6. Part and Subclass Identity

7. Subclasses and equivalent classes

8. Translate loosely from natural lan-
guages

(1) deals with the characteristics which can be directly checked on a logical
level based on the model.
Inconsistency: An ontology is called inconsistent if there is not a correct map-
ping between the ”real world” and the model. The issue is that an inconsistent
ontology follows statements as logical consequences but cannot be used for auto-
mated deduction. (A class is called inconsistent/unsatisfiable if it is interpreted
as an empty set in the model. This is not an issue as long as no instance is added
to the class.)
Coherency: An ontology does not contain unsatisfiable classes. A consistent
ontology can be incoherent but a coherent ontology cannot be inconsistent.
Software tools o↵er automatic checking for these flaws. Incoherency and incon-
sistency can be prevented by not constraining the model enough. [6, p. 317, 318]

(2) indicates another modelling problem, kinds of taxonomic cycles inside the
structure. This behaviour may occur when using classes which have a similar
meaning in semantic, but this is rather seldom. The following example shows a
taxonomic circle:

Architecture v Faculty
Faculty v University
University v Building
Building v Architecture

To prevent such a behaviour the ontology can be checked for rigidity.
Rigidity: A class is called rigid if every member of it cannot stop being a member
without loosing existence. A class can be rigid, anti-rigid, or none-of both, addi-
tional characteristics might be Identity, Unity and dependency. [6, p. 319, 320]
Tools exist for automated ontology checking, such as reasoning tools which can
determine the set of axioms which are responsible for the inconsistency. Further
information about a semantic reasoner will be given in section 3.2.

(3) covers the accuracy and granularity of the model for the ontology; mainly
the model is verified against its ”real-world-domain”; of course this cannot be
checked automatically. Therefore it can be verified by a second ontology engineer
who can measure some characteristics like number of domain related statements,

TAXONOMIC — TAXON: 

GROUP OF ONE OR MORE 

POPULATIONS OF AN ORGANISM



3. ACCURACY CRITERIA

MODELLING ONTOLOGIES

• Accuracy and granularity against “real-world-domain” 

• Cannot be done automatically 

• Double-Checking 

• Modeling Samples for testing: random sampling

“The man saw her with the telescope"

UNAMBIGUOUS 
DEFINITIONS !!!



4. DISJOINTNESS

MODELLING ONTOLOGIES

• disjoint classes when necessary 

• People 

• when gender matters (e.g. animals)

number of classes and additionally random testing against some test specifica-
tion.

(4) demonstrates that is important to disjoint classes when needed. As an
example for a possible flaw regard the following model:

Woman v Human,Human v Man tWoman,Man v Human
Woman(Anna),Man(Steve)

Now assume the following statement: ¬Man(Anna) There is no logical reason
why ”Anna” cannot be a man and a woman but in ”real life logic” this makes not
much sense of course. To prevent this the classes ”Man” and ”Woman” have to
become disjoint which means that there is no individual existing in both classes.
[6, p. 321, 322]
(5) shows the issue when it comes to a quantification of classes and individuals.
For the ontology it is often very important to express a quantification in a ”has-
a” relation like ”a car has wheels and a motor”.

The existential quantifier(9) is used more often than the universal quanti-
fier (8). An indication in natural language for use of the universal quantifier8)
can be seen when statements occur like nothing but, only, exclusively. A misap-
prehension can easily occur when looking at the following example. One wants
to express that ”a car has wheels”, then the correct translation should be
Car v 9has.Wheels. Often the following and wrong translation is performed
Car v 8has.Wheels but this implies that the car has only wheels (or noth-
ing). This implication is – indeed – wrong.
As a rule of thumb the following two implications can be used in most cases:

– By default the existential quantifier (9) should be used
– The universal quantifier (8) does not guarantee the existence of a respec-

tive rule (for all or nothing)

[6, p. 322, 323]

(6) describes the issue which may occur when mixing or not explicitly isolat-
ing subclasses and parts. The following example ([6, p. 323]) shows an example
where this misconception happened.

Finger v Hand,Hand v Arm,Arm v Body
Toe v Foot, Foot v Leg, Leg v Body

Arm u Leg v?
(Arm and Leg are disjoint)

This model allows to deduce Arm(myLeftThumb) because the thumb is not
only a finger it is also a hand and an arm (at least when following the above
mentioned model). In this case the subclass relation partOf was used mistakenly.
In this case the reason could have been that both subclasses share the property

• Statement: ¬Man(Anna)  

• no “logical reason” why “Anna” cannot be male and female 

• Real-life-logic: “Anna” can definitely not be a man and a woman



5. QUANTIFICATION AND QUANTIFIERS

MODELLING ONTOLOGIES

• existential quantifier (∃) >>> universal quantifier (∀) 

• universal quantifier (∀) use when statements like 
• nothing but 
• only 
• exclusively

• Formalising: One wants to express “A car has wheels” 

• Car ⊑ ∃has.Wheel 

• Car ⊑ ∀has.Wheel 

• car has only wheels (if it has anything at all)



6. PART AND SUBCLASS IDENTITY

MODELLING ONTOLOGIES

• Modell Deduction: Arm(myLeftThumb) 

• thumb is not only a finger it is also a hand and an arm (according to model) 

• subclass relation partOf was used mistakenly 

• both subclasses share the property of ”belonging to something” ??? 

• introducing a new role: partOf

number of classes and additionally random testing against some test specifica-
tion.

(4) demonstrates that is important to disjoint classes when needed. As an
example for a possible flaw regard the following model:

Woman v Human,Human v Man tWoman,Man v Human
Woman(Anna),Man(Steve)

Now assume the following statement: ¬Man(Anna) There is no logical reason
why ”Anna” cannot be a man and a woman but in ”real life logic” this makes not
much sense of course. To prevent this the classes ”Man” and ”Woman” have to
become disjoint which means that there is no individual existing in both classes.
[6, p. 321, 322]
(5) shows the issue when it comes to a quantification of classes and individuals.
For the ontology it is often very important to express a quantification in a ”has-
a” relation like ”a car has wheels and a motor”.

The existential quantifier(9) is used more often than the universal quanti-
fier (8). An indication in natural language for use of the universal quantifier8)
can be seen when statements occur like nothing but, only, exclusively. A misap-
prehension can easily occur when looking at the following example. One wants
to express that ”a car has wheels”, then the correct translation should be
Car v 9has.Wheels. Often the following and wrong translation is performed
Car v 8has.Wheels but this implies that the car has only wheels (or noth-
ing). This implication is – indeed – wrong.
As a rule of thumb the following two implications can be used in most cases:

– By default the existential quantifier (9) should be used
– The universal quantifier (8) does not guarantee the existence of a respec-

tive rule (for all or nothing)

[6, p. 322, 323]

(6) describes the issue which may occur when mixing or not explicitly isolat-
ing subclasses and parts. The following example ([6, p. 323]) shows an example
where this misconception happened.

Finger v Hand,Hand v Arm,Arm v Body
Toe v Foot, Foot v Leg, Leg v Body

Arm u Leg v?
(Arm and Leg are disjoint)

This model allows to deduce Arm(myLeftThumb) because the thumb is not
only a finger it is also a hand and an arm (at least when following the above
mentioned model). In this case the subclass relation partOf was used mistakenly.
In this case the reason could have been that both subclasses share the property

of ”belonging to something”. In this case the leads to a logical inconsistence but
this can be prevented by introducing a new role e.g. partOf. This then leads to
the following corrected model:

Finger v 9partOf.Hand,Hand v 9partOf.Arm,Arm v 9partOf.Body
Toe v 9partOf.Foot, Foot v 9partOf.Leg, Leg v 9partOf.Body

Arm u Leg v?

As the rule of thumb a subclass X (of the parent class Z) can be introduced i↵
the statement ”every X is always a Z” is true. [6, p. 324]

(7) is the counter part to (6) when it is hard do decide wether a class is a sub-
class or an equivalent class of another. Subclassing can be used when trying to ex-
press some characteristic about members of a class. A subclass LivingInWater
can express that a member LivingInWater(fish), in this case the fish, does
live in water. It can be seen as a necessary criterion for being a fish. Now it is
important to not imply a su�cient criterion out of this characteristic because
it is not su�cient for beeing a fish when living in water (such as a moray or
plankton also live in water but are no fish). Equivalence statements can be used
when i↵ a class description is necessary and su�cient. This relation could look
like this Winner ⌘ Playeru8hasCompleteCollection.Spades, a player can only
be a winner i↵ he is playing a game and is holding a whole collection of a spades.

(8) describes a modelling incoherency which may occur when translating to
verbally from a natural language. The simplest example can be a misunder-
standing when using ”and”; it does not always mean an intersection between to
characteristics or properties. When trying to model the statement: ”Sta↵ mem-
bers and students of the university will get a login account”. The ”and” will be
translated into a union StaffMember t Student v 9have.LoginAccount and
not into an intersection StaffMemberuStudent v 9have.LoginAccount. The
intersection would express that only those will have a login account who are
students and sta↵ members. The di↵erence is visible in figure 2. When unsure
about the correct modelling in this position rephrasing and testing can help
getting out of the misery. [6, p. 325, 326]

2.4 Conclusion: Engineering Ontologies

In a nutshell it becomes clear that the ontology engineer is not only responsi-
ble for the technical approach, the domain specific analysis such as domain and
scope, term enumeration, property definition is as important as taking care for
a reusable ontology or knowledge system.
Beside, it is remarkable that the engineering processes (introduced in section
2.1 and 2.2) seem to have some similarities but when diving into the topic and
deciding about a procedure both disciplines evolve to be diverging. Clearly, both
disciplines have to follow a certain (given) procedure and the tasks for the pro-
cedures can clearly be defined but from the technical point of view the workflow



7. SUBCLASSES AND EQUIVALENT CLASSES

MODELLING ONTOLOGIES

• Subclass or equivalent class? 

• Subclassing: express characteristic about members of a class  

• LivingInWater — a member LivingInWater(fish) is a fish 

• necessary criterion for being a fish — do not formulate sufficient criterion 
(plankton, coral) 

• Equivalence statement: can be used iff a class description is necessary and 
sufficient 

• Winner ≡ Player⊓∀hasCompleteCollection.Spades 

• a player can only be a winner iff he is playing a game and is holding a whole 
collection of spades



8. TRANSLATE LOOSELY FROM NATURAL LANGUAGES

MODELLING ONTOLOGIES

• Misunderstanding when using ”and” 
• not always an intersection between to characteristics or 

properties 
• Formalising statement: ”Staff members and students of the 

university will get a login account” 
• ”and” translated into union 

• StaffMember ⊔ Student ⊑ ∃have.LoginAccount 

• not into an intersection 
• StaffMember ⊓ Student ⊑ ∃have.LoginAccount 

• intersection: only those will have a login account who are 
students and staff members



DEMONSTRATION

NATURAL LANGUAGE PROCESSING FOR 

AUTOMATIC KNOWLEDGE GATHERING

https://upload.wikimedia.org/wikipedia/commons/f/f8/Python_logo_and_wordmark.svg

NATURAL LANGUAGE TOOLKIT

http://www.nltk.org

https://upload.wikimedia.org/wikipedia/commons/f/f8/Python_logo_and_wordmark.svg
http://www.nltk.org


NATURAL LANGUAGE TOOLKIT

DEMONSTRATION: NLTK

• Natural language processing 

• Possibility to electronically understand natural language 

• —> gathering knowledge 

• Search Engines (Google, Yahoo, Qwant…) —> Question 

• Hard task: different types of languages (grammar, rules, etc.) 

• (- English, German - Japanese, Chinese -) 

• AI principles, machine learning techniques, huge amount of 
training data



DEMONSTRATION: NLTK

CHALLENGES - NLP

• Grammatical structure by language (Statements, Questions) 

• Special grammar for each language (comp. English and Chinese) 

• Tenses: Rules apply, but Exceptions are common 

• Depends on language 

• Language Recognition: 

• Regular Expressions (earlier days, nowadays) 

• AI methods - machine learning, neural networks (nowadays)
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• See attached paper: 

• The ontology engineering process


